1. MODUS PONEN (MP)
p
⇒qp
∴qPembuktian:
[(p
⇒q)∧p]⇒qek ~[(~p
∨q)∧p]∨q (Imp)ek [(p
∧~q)∨~p]∨q (Komp.DM)ek [(p
∨~p)∧(~p∨~q)]∨q (Dist)ek [T
∧(~p∨~q)]∨q (Komp)ek (~p
∨~q)]∨q (Id)ek ~p
∨(~q∨q) (As)ek ~p
∨T (Komp)ek T (Id)
Kesimpulan :
Argumen
p
⇒qp
∴q Argumen sah
2. MODUS TOLENS (MT)
p
⇒q~q
∴~pPembuktian ;
[(p
⇒q)∧~q]⇒~pek ~[(~p
∨q)∧~q]∨~p (Imp)ek [(p
∧~q)∨q]∨~p (DM)ek [(p
∨q)∧(~q∨q)]∨~p (Dist)ek [(p
∨q)∧T]∨~p (Komp)ek (p
∨q)∨~p (Id)ek (p
∨~p)∨(q∨~p) (Dist)ek T
∨(q∨~p) (Komp)ek T (Id)
Kesimpulan :
Argumen
p
⇒q~q
∴~pArgumen sah
3. Silogisme
p
⇒qq
⇒r∴p⇒rPembuktian :
[(p
⇒q)∧(q⇒r)]⇒(p⇒r)ek (p
⇒q)⇒[(q⇒r)⇒(p⇒r)] (Eksp)ek (p
⇒q)⇒[(~q∨r)⇒(~p∨r)] (Imp)ek (p
⇒q)⇒[(q∧~r)∨(~p∨r)] (Imp)ek (p
⇒q)⇒[(q∧~r)∨(r∨~p)] (Kom)ek (p
⇒q)⇒[(q∧~r)∨r]∨~p (As)ek (p
⇒q)⇒[(q∨r)∧(~r∨r)]∨~p (Dist)ek (p
⇒q)⇒[(q∨r)∧T]∨~p (Komp)ek (p
⇒q)⇒(q∨r)∨~p (Id)ek (~p
∨q)⇒q∨r∨~p (Imp)ek ~(~p
∨q)∨(q∨r∨~p) (Imp)ek ~(~p
∨q)∨(~p∨q)∨r) (As)ek T
∨r (Komp)ek T
Kesimpulan :
Argumen
p
⇒qq
⇒r∴p⇒rArgumen sah
4. DISTRUKTIF SILOGISMA (DS)
p
∨q~p
∴qPembuktian :
[(p
∨q)∧~p]⇒qek ~[(p
∨q)∧~p]∨q (Imp)ek [(~p
∧~q)∨p]∨q (DM)ek [(~p
∨p)∧(~q∨p)]∨q (Dist)ek [T
∧(~q∨p)]∨q (Komp)ek (~q
∨p)∨q (Id)ek (~q
∨q)∨p (As)ek T
∨p (Komp)ek T (Id)
Kesimpulan :
Argumen
p
∨q~p
∴qArgumen Sah
5. Konstructif Dilema (KD)
p
⇒q∧(r⇒s)p
∨r∴q∨sPembuktian :
{[(p
⇒q)∧(r⇒s)]∧(p∨r)}⇒q∨sek [(~p
∨q)∧(~r∨s)∧(p∨r)]⇒q∨s (Imp)ek [(p
∧~q)∨(r∧~s)∨(~p∧~r)]∨(q∨s) (Imp)ek [(p
∧~q)∨(~p∧~r)∨(r∧~s)]∨(q∨s) (As)ek [(p
∧~q)∨(~p∧~r)]∨[(r∧~s)]∨(q∨s)] (As)ek [{(p
∧~q)∨~p}∧{(p∧~q)∨~r}]∨[(r∧~s)]∨(q∨s)] (Dist)ek [{(p
∧~q)∨~p}∧{(p∧~q)∨~r}]∨[{(r∧~s)]∨s}∨q] (As)ek [{(p
∨~p)∧(~q∨~p)}∧{(p∨~r)∧(~q∨~r)}]∨[{(r∨s)∧(~s∨s)}∨q] (Dist)ek [{T
∧(~q∨~p)}∧{(p∨~r)∧(~q∨~r)}]∨[{(r∨s)∧T}∨q] (Komp)ek [{(~q
∨~p)∧{(p∨~r)∧(~q∨~r)}]∨[{(r∨s)∨q] (Id)ek [{(~q
∨~p)∧{(p∨~r)∧(~q∨~r)}∨q]∨(r∨s)] (As)ek [{(~q
∨~p)∨q}∧{(p∨~r)∨q}∧{(~q∨~r)∨q}]∨[(r∨s)] (Dist)ek [{(~q
∨q)∨~p}∧(p∨q∨~r)∧{(~q∨q)∨~r}]∨[(r∨s)] (As)ek [(T
∨~p)∧(p∨q∨~r)∧(T∨~r)]∨[(r∨s)] (Komp)ek [T
∧(p∨q∨~r)∧T]∨(r∨s) (Id)ek (p
∨q∨~r)∨(r∨s) (Id)ek (r
∨~r)∨(p∨q∨s) (As)ek T
∨(p∨q∨s) (Komp)ek T (Id)
Kesimpulan :
Argumen
p
⇒q∧(r⇒s)p
∨r∴q∨sArgumen sah
6. Destruktif Dilema (DD)
p
⇒q∧(r⇒s)(~q
∨~s)∴(~p∨~r)Pembuktian:
{[(p
⇒q)∧(r⇒s]∧(~q∨~s)⇒(~p∨~r)ek [(~p
∨q)∧(~r∨s)∧(~q∨~s)]⇒(~p∨~r) (Imp)ek [(p
∧~q)∨(r∧~s)∨(q∧s)]∨(~p∨~r) (Imp)ek [(p
∧~q)∨(q∧s)∨(r∧~s)∨(~p∨~r)] (As)ek [(p
∧~q)∨(q∧s)]∨[(r∧~s)∨(~p∨~r)] (As)ek [{(p
∧~q)∨q}∧{(p∧~q)∨s}]code>∨[{(r∧~s)∨(~p∨~r)] (Dis)ek [{(p
∧~q)∨q}∧{(p∧~q)∨s}]code>∨[{(r∧~s)∨~r}∨~p] (As)ek [{(p
∨q)∧(~q∨q)}∧{(p∨s)∧(~q∨s)}]∨[{(r∨~r)∧(~s∨~r)}∨~p] (Dis)ek [{(p
∨q)∧T}∧{(p∨s)∧(~q∨s)}]∨[{T∧(~s∨~r)}∨~p] (Komp)ek [(p
∨q)∧(p∨s)∧(~q∨s)]∨[(~s∨~r)∨~p] (Id)ek [(p
∨q)∧(p∨s)∧(~q∨s)∨p]∨(~s∨~r) (As)ek [{(p
∨q)∨~p}∧{(p∨s)∨~p}∧{(q∨s)∨~p}]∨(~s∨~r) (Dis)ek [{(p
∨~p)∨q}∧{(p∨~p)∨s}∧(q∨s∨~p}]∨(~s∨~r) (As)ek [(T
∨q)∧(T∨s)∧(q∨s∨~p}]∨(~s∨~r) (Komp)ek [(T
∧T∧(q∨s∨~p}]∨(~s∨~r) (Id)ek (q
∨s∨~p}∨(~s∨~r) (Id)ek (s
∨~s)∨(~p∨q∨~r) (As)ek T
∨(~p∨q∨~r) (Komp)ek T (Id)
Kesimpulan :
Argumen
p
⇒q∧(r⇒s)(~q
∨~s)∴(~p∨~r)Argumen sah.